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A wavefront reconstruction algorithm based on sub-aperture stitching is proposed to reconstruct a phase
from its phase differences to improve calculation efficiency. The proposed algorithm is similar to the
sub-aperture stitching interferometry. It divides large phase grids into several small sub-apertures, recon-
structs the phase of each sub-aperture from the phase differences through the standard wavefront recon-
struction algorithm, and then stitches the results of the sub-apertures together. The proposed algorithm
can efficiently reconstruct the phase with much less computer memory and calculation time. Simulations
and experiments are conducted to demonstrate the effectiveness of the proposed algorithm.
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The wavefront reconstruction algorithm in lateral shear-
ing interferometry is a typical inverse procedure that
reconstructs wavefront from its phase differences, and
thus critical for wavefront measurement. Several
algorithms[1−13] have been investigated and proposed.
Among these algorithms, 1) integration methods are di-
rect, simple, and rapid reconstruction algorithms. How-
ever, these methods suffer from several disadvantages,
such as noise accumulation, error propagation, and re-
stricted measurement area[1−2]; 2) Polynomial fitting
methods[3−4] can reduce noise accumulation and have
good error propagation properties. However, prior
knowledge of the test surface is necessary to ensure
good accordance of the selected polynomial with the test
surface; 3) Fourier transformation methods[5−6] require
hardly any preconditions of the test surface and need less
computational effort. However, the information of shear
periodic parts in such algorithms can be lost[5]; 4) Par-
tial differential equation (PDE) methods[7−13] require no
prior knowledge of the wavefront and have no noise ac-
cumulation. However, these methods need a very large
computational effort to solve a set of equations. Several
studies have attempted to solve such set of equations by
iterative numerical schemes[8−9]. However, the conver-
gence rate is slow when the phase grid is large[12]. Hence,
PDE methods require a large computer memory and cal-
culation time, thereby decreasing phase efficiency. The
resolution of commercial interferometer in lateral shear-
ing interferometry is more than 240×320. Therefore, the
size of the coefficient matrix[7−8] that connects the phase
and its differences is larger than 2×(240×320)2. This size
is significantly large that the existing PDE methods[7−13]

fail to reconstruct the phase efficiently.
A new wavefront reconstruction algorithm based on

sub-aperture stitching was proposed in this study to im-
prove the calculation efficiency. This new algorithm is
similar to the sub-aperture stitching interferometry[14,15].
In this algorithm the large phase grid was divided into
several small sub-apertures; the phase of each sub-
aperture was reconstructed from phase differences by the

Hudgin wavefront sensor geometry[7]; and the results of
sub-apertures were stitched together. The proposed al-
gorithm can efficiently reconstruct the phase with much
less computer memory and calculation time. In addition,
it has potential application in lateral shearing interfer-
ometry, especially for the reconstruction of large phase
grid. Firstly, the principle of the proposed algorithm is
discussed, and then its effectiveness is verified by com-
puter simulation and experiment.

In a standard Fizeau interferometer, the measured
phase of the test surface is obtained and expressed as

Φ
0(x, y) = φ(x, y) − φR(x, y), (1)

where φ(x, y) and φR(x, y) represent the true phases of
the test and reference beams, respectively. The test sur-
face was laterally shifted along x and y axes and the shift-
ing amounts were approximated to the transverse spatial
resolution of the interferometer[11]. Two new phase maps
were obtained and expressed as

Φ
x(x, y) = φ(x + 1, y) − φR(x, y), (2)

Φ
y(x, y) = φ(x, y + 1) − φR(x, y). (3)

According to the three measured phase maps, Φ
0, Φ

x,
and Φ

y, the absolute phase differences of the test surface
between the nearest X- and Y-neighbor spatial cells on
the test surface can be obtained as

φx(x, y) = φ(x + 1, y) − φ(x, y)

= Φ
x(x, y) − Φ

0(x, y), (4)

φy(x, y) = φ(x, y + 1) − φ(x, y)

= Φ
y(x, y) − Φ

0(x, y), (5)

where φx(x, y) and φy(x, y) represent the absolute phase
differences of φ(x, y), which correspond to the partial
derivatives of the true phase of the test surface. The
absolute phase measurement of the test surface can be
performed by virtual lateral shearing interferometry by
reconstructing the true phase φ(x, y) from φx(x, y) and
φy(x, y)[16].
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Fig. 1. Schematic of the division of the large phase into sev-
eral small sub-apertures.

Assume that the phase of the test surface is expressed
discretely as an array φi,j , i=1, 2, · · · , L; j=1, 2, · · · , M ,
where L and M denote the size numbers of the matrix
φ in the row and column directions, respectively. The
large phase array φ is then divided into K small sub-
apertures, as shown in Fig. 1. The phase array in each
sub-aperture has N rows and M columns and is expressed
as φk

i,j , where i=1, 2, · · · , N ; j=1, 2, · · · , M ; k=1, 2,
· · · , K. Herein, N is far less than L, (i.e., N ≪ L).
For 1< k < K, the kth sub-aperture has to overlap with
the (k–1)th and (k+1)th sub-apertures, as shown in Fig.
1. The overlap region has P rows and Mcolumns, where
16P <N . Through the geometric analysis of Fig. 1, the
relation of N , P , K, and L was obtained and expressed
as

L = KN − (K − 1)P. (6)

The phase array in the kth sub-aperture has N rows and
M columns, which can be reconstructed from the abso-
lute phase differences φx(x, y) and φy(x, y). The discrete
version of phase differences can be expressed as

φx
i,j = φi,j+1 − φi,j , (1 6 i 6 N, 1 6 j 6 M − 1); (7)

φ
y
i,j = φi+1,j − φi,j , (1 6 i 6 N − 1, 1 6 j 6 M). (8)

According to Eqs. 7 and 8, the relation between the
phase and the phase differences can be rewritten as

∆ϕ = Aϕ, (9)

where ∆ϕ and ϕ are one-dimensional (1D) arrays, and
ϕ = [φ1,1Kφ1,MKφ2,1Kφ2,MKφN,1KφN,M ]T and ∆ϕ =
[φx

1,1Kφx
1,M−1φ

x
2,1Kφx

2,M−1Kφx
N,1Kφx

N,M−1φ
y
1,1Kφ

y
1,M

φ
y
2,1Kφ

y
2,MKφ

y
N−1,1Kφ

y
N−1,M ]T. The lengths of ∆ϕ and

ϕ are 2MN −M −N and MN , respectively. The matrix
of A that relates the arrays ∆ϕ and ϕ can be expressed
as

A =

[

D
E

]

, (10)

where D and E can be expressed as

D =











D1

D2

D3

O
DN











, (11)

where

D1 = D2 = D3 = K = DN=
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−1 1
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and

E =
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−1 1
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, (13)

where DN , D, and E are the relations between ϕ and
the nth row of φx(x, y), φx(x, y), and φy(x, y), respec-
tively. D is a diagonal matrix containing DN and every
row of E between –1 and 1 comprises M–1 zeros. The
sizes DN , D, and E are (M − 1)×M , N(M − 1)×MN ,
and M(N − 1) × MN , respectively, thus the size of A is
(2MN − M − N) × MN .

Herrmann[10] indicated that using the zero-mean con-
dition leads to an extended Ae matrix that meets the
condition where AT

e Ae is not singular. The extended Ae

and ∆ϕe are expressed as

Ae =

[

A
F

]

, (14)

and

∆ϕe =

[

∆ϕ
Z

]

, (15)

where F is a matrix consisting entirely of ones and Z is
a matrix consisting entirely of zeros. The sizes of F and
Z are (M + N) × MN and (M + N) × 1, respectively.
Thus, the sizes of Ae and ∆ϕe become 2MN ×MN and
2MN × 1, respectively. Finally, the phase in the sub-
aperture can be reconstructed as[8,10]

ϕ = (AT
e Ae)

−1AT
e ∆ϕe. (16)

The two-dimensional (2D) phase array φ can be easily
obtained from the 1D phase array ϕ.

The calculation of Eq. (16) leads to a consumption
of large computer memory and calculation time because
the extended matrix Ae is a big sparse matrix[8,10]. The
computer memory needed in the calculation increases fast
with the square of MN . However, in our proposed algo-
rithm, the phase array was divided into several small sub-
apertures to ensure that N is a small number (N ≪ L) to
effectively reduce the computer memory needed. In addi-
tion, the big phase array was divided into sub-apertures
with equal sizes. Thus, (AT

e Ae)
−1AT

e remains constant
for all sub-apertures and is calculated only once, which
effectively reduces the calculation time needed.

After the phase array φ in each sub-aperture is re-
constructed, the results of sub-apertures are stitched to-
gether. The obtained phase array φ in each sub-aperture
has zero mean, which is not true in most cases. If the
results are simply stitched according to the spatial posi-
tion of the sub-aperture without compensating the mean
of the phase in each sub-aperture, a phase step error
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will result in the final stitched phase map, as shown in
Fig. 2(a). Figure 2(b) shows the 1D phase error of Fig.
2(a), wherein a phase step error between the adjacent
sub-apertures in row direction of the phase array is ob-
served. However, the phase step error can be compen-
sated by

φC
k+1 = φk+1 + mean[φk(xk,k+1)]

− mean[φk+1(xk,k+1)], (k = 1 : K − 1), (17)

where φC
k+1 represents the compensated phase, φk and

φk+1 represent the phase array before comensation in
the kth and the (k+1)th sub-apertures, respectively.
The operators mean[φk(xk,k+1)] and mean[φk+1(xk,k+1)]
represent the averages of the phases φk and φk+1 in the
overlap between the kth and the (k+1)th sub-apertures,
respectively, wherein the overlap has P rows and M
columns. Finally, the compensated phase is stitched
together according to the spatial position of the sub-
aperture. The stitched phase is shown in Fig. 3(a); its
phase error in the row direction is shown in Fig. 3(b).
The phase step error was effectively reduced by com-
pensating the mean of the phase in each sub-aperture
according to Eq. (17), as shown in Fig. 3. The residual
phase error in Fig. 3(b) was mainly caused by the ran-
dom noise in the phase differences.

The exact expression of an actual object surface is
hard to determine because of several practical factors.
Thus, a series of computer simulations were carried out
to verify the effectiveness of the proposed algorithm. We
assume that the given measured phase is φ=peaks(601),
where peaks is a sample function of two variables in
Matlab. The given phase has 601 rows and 601 columns
(i.e., L = M = 601), as shown in Fig. 4(a). The phase
differences φx and φy were calculated using Eqs. (4) and
(5). In addition, the phase differences were added by a
normal random noise (mean = 0 and standard deviation
= 0.001). The signal-to-noise ratio (SNR) of the phase
difference was about 14.07 dB. SNR was defined as the
ratio of the standard deviation of the calculated phase
differences to that of the random noise. The noised phase
differences in the column and row directions are shown

Fig. 2. (a) Stitched phase without compensation of the mean
of phase in each sub-aperture and (b) 1D phase error of (a)
in the row direction.

Fig. 3. (a) Stitched phase with compensation of the mean of
phase in each sub-aperture and (b) 1D phase error of (a) in
the row direction.

Fig. 4. Simulation results. (a) The given phase, (b) and (c)
the phase differences in the column and row directions, re-
spectively, (d) the reconstructed phase, (e) the reconstructed
phase error, and (f) one-dimensional phase error in the 300
th column.

in Figs. 4(b) and (c), respectively.
The given phase was divided into 300 sub-apertures

by setting N=3 and P=1. The proposed algorithm
was then applied, and the phase was reconstructed and
stitched. Figure 4(d) shows the final reconstructed phase
from Figs. 4(b) and (c). The reconstructed phase error
of the proposed algorithm was obtained by comparing
the reconstructed phase with the given phase, as shown
in Fig. 4(e). The peak-to-valley and root-mean-square
(RMS) values of Fig. 4(e) were 0.0545 and 0.0061 rad,
respectively. Figure 4(f) shows the 1D phase error of
Fig. 4(e) in the 300th column. The proposed algorithm
exhibited random reconstructed phase error, which is
mainly caused by the added random noise in the phase
differences. The simulation showed that the proposed al-
gorithm can effectively reconstruct the phase from phase
differences even if the phase grid is very large.

The aforementioned simulation was processed with
a 2.6-GHz laptop using MATLAB. The total process-
ing time was about 39 s under the setting of N=3,
P=1, and M=601. However, if the phase from phase
differences is directly reconstructed using Eq. (16) by
setting M = N=601, it will fail to calculate because it
is out of the computer memory. We assume that the
given phase has a size of 61×61, i.e., L = M=61, the
processing time of the Hudgin’s reconstruction method[7]

(N = M=61) is 144.875 s, and the processing time of
the reconstruction method (N=3 and M=61) is 0.078 s
to show the calculation efficiency of the proposed algo-
rithm. The division of the large phase grid into several
small sub-apertures can effectively reduce the processing
time of wavefront reconstruction. Based on the simu-
lation results, we conclude that the proposed algorithm
can reduce the calculation time and computer memory
needed.

The accuracy of the proposed algorithm depends on
the SNR of the phase differences. Thus, we reconstructed
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the phase using the proposed algorithm from the phase
differences with different SNRs and obtained the RMS
values of the reconstructed phase error, as shown in
Fig. 5. The reconstructed phase error of the proposed
algorithm decreases with increasing SNR of the phase
differences.

The proposed algorithm was used for virtual lateral
shearing interferometry to further verify its performance.
The measurement of a flat was performed in a sub-
aperture stitching interferometer (SSI) developed by
QED. The test flat was measured 50 times in the orig-
inal position, and the average of the measurement was
calculated and shown in Fig. 6(a). Figures 6(b) and (c)
show the phase differences in the column and row di-
rections calculated from Fig. 6(a) by digital differential.
The phase was then reconstructed from Figs. 6(b) and
(c), and shown in Fig. 6(d). Figure 6(d) agrees well
with Fig. 6(a), thereby demonstrating the effectiveness
of the proposed algorithm in reconstructing phase from
the phase differences. The reconstructed phase contains

Fig. 5. Relation between the constructed phase error and the
SNR of the phase differences.

Fig. 6. Experiment of phase reconstruction. (a) The mea-
sured phase (b) and (c) the calculated phase differences of
(a) in column and row directions, and (d) the reconstructed
phase from (b) and (c).

the phase of the reference surface in the SSI because

the phase differences were calculated from Fig. 6(a), as
shown in Fig. 6(d).

In conclusion, the wavefront reconstruction algorithm,
which reconstructs the phase from its phase differences,
is critical for lateral shearing interferometry and virtual
lateral shearing interferometry. In this study, a wavefront
reconstruction algorithm with high calculation efficiency
is proposed based on sub-aperture stitching. The pro-
posed algorithm divides large phase grids into several
small sub-apertures, reconstructs the phase of each sub-
aperture from phase differences by the standard wave-
front reconstruction algorithm, and stitches the results of
sub-apertures together. Simulations and experiments are
carried out to demonstrate the effectiveness of the pro-
posed algorithm. The simulations show that the division
of the large phase grid into several small sub-apertures
with equal size effectively reduced the calculation time
and computer memory needed. The processing time of
the proposed algorithm is about 39 s when the phase
grid was 601×601. In addition, the reconstructed phase
error of the proposed algorithm decreased with increas-
ing SNR of the phase differences. The experiment shows
that the proposed algorithm can be applied to virtual
lateral shearing interferometry.

This work was supported by the Natural Science Foun-
dation of Zhejiang Province of China under Grant No.
Y1110125.
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